Acta Crystallographica Section C ### **Crystal Structure Communications** ISSN 0108-2701 # 1,5-Bis(4-chlorophenyl)-3-(2-chloroquinolin-3-yl)pentane-1,5-dione: sheets of $R_4^4(26)$ rings built from C—H···N and C—H···O hydrogen bonds ## Braulio Insuasty, ^a Harlen Torres, ^b Justo Cobo, ^c John N. Low ^d and Christopher Glidewell^e* ^aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ^bDepartamento de Ciencias Básicas, Universidad Nacional de Colombia Sede Palmira, Crra. 32, Chapinero vía Candelaria, AA 237 Palmira-Valle, Colombia, ^cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ^dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: cg@st-andrews.ac.uk Received 24 November 2005 Accepted 25 November 2005 Online 24 December 2005 Molecules of the title compound, $C_{26}H_{18}Cl_3NO_2$, are linked into sheets of $R_4^4(26)$ rings by a combination of $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds. #### Comment With the aim of developing new classes of fused heterocyclic systems, we have prepared a range of novel chalcones appropriately functionalized for use as intermediates. The reactions used to prepare such chalcones involve methyl aryl ketones and aryl or heteroaryl aldehydes. We report here the structure of the title compound, (I) (Fig. 1), obtained in low yield as a by-product in the preparation of the pyrazolyl-quinoline (II) *via* the corresponding chalcone (III), formed by the reaction between 2-chloroquinoline-3-carbaldehyde and 4-chlorophenyl methyl ketone. The bond distances within the quinoline portion of the molecule (Table 1) show evidence for significant bond fixation; the N31—C32 bond is thus significantly shorter than N31—C38A, while the C33—C34, C35—C36 and C37—C38 bonds are all significantly shorter than the other peripheral C—C bonds. The two independent 4-chlorobenzoylmethylene components adopt different conformations relative to the quinoline component so that the molecules have no internal symmetry and hence are chiral; however, the centrosymmetric space group *Pbca* accommodates equal numbers of the two enantiomorphic forms. The molecules are linked into sheets by two hydrogen bonds, one each of the $C-H\cdots N$ and $C-H\cdots O$ types (Table 2), and the sheet formation is readily analysed in terms of two one-dimensional substructures. Quinolinyl atom C34 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom N31 in the molecule at $(-\frac{1}{2} + x, y, \frac{1}{2} - z)$, so forming a C(5) (Bernstein *et al.*, 1995) chain running parallel to the [100] direction and generated by the *a*-glide plane at $z = \frac{1}{4}$ (Fig. 2). In addition, quinolinyl atom C37 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O17 in the molecule at $(1-x, -\frac{1}{2}+y, \frac{1}{2}-z)$, so forming a C(11) chain running parallel to the [010] direction and generated by the 2_1 screw axis along $(\frac{1}{2}, y, \frac{1}{4})$ (Fig. 3). The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Figure 2 Part of the crystal structure of (I), showing the formation of a hydrogenbonded C(5) chain along [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(-\frac{1}{2} + x, y, \frac{1}{2} - z)$ and $(\frac{1}{2} + x, y, \frac{1}{2} - z)$, respectively. Part of the crystal structure of (I), showing the formation of a hydrogenbonded C(11) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(1 - x, -\frac{1}{2} + y,$ (1 - z) and $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$, respectively. The combination of the [100] and [010] chains generates a (001) sheet in the form of a (4,4)-net (Batten & Robson, 1998) built from a single type of $R_4^4(26)$ ring, lying in the domain -0.02 < z < 0.52, and generated by the glide plane and screw axes at $z = \frac{1}{4}$ (Fig. 4). A second sheet, related to the first by inversion, lies in the domain 0.48 < z < 1.02, and is generated by the glide plane and screw axes at $z = \frac{3}{4}$. The only direction-specific interaction between adjacent sheets is a rather long $C-H\cdots O$ contact with anyl atom C15 as the donor (Table 2) but whose H···O distance is close to the Figure 4 A stereoview of part of the crystal structure of (I), showing the formation of a (001) sheet built from $R_4^4(26)$ rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. van der Waals limit; this interaction is therefore probably of little or no structural significance. The molecular constitution of (I) has some resemblance to that of the thienyl compound (IV), but the supramolecular arrangement is entirely different in (IV), where the molecules are linked into cyclic centrosymmetric dimers by paired C— $H \cdot \cdot \cdot \pi$ (thienyl) hydrogen bonds (Trilleras *et al.*, 2005). #### **Experimental** Hydrazine hydrate (0.70 g of a 55% aqueous solution, 12 mmol) was added dropwise to a solution of (E)-1-(4-chlorophenyl)-3-(2-chloroquinolin-3-yl)prop-2-en-1-one, (III) (2.3 g, 7 mmol), in methanol (40 ml), and the resulting mixture was then stirred at room temperature for 15 min. The solid product was collected by filtration and washed with cold methanol to give 2-chloro-3-[3-(4-chlorophenyl)-1H-pyrazol-5-yl]quinoline, (II) (2.2 g, 88% yield). Evaporation of the filtrate yielded crystals of (I) suitable for single-crystal X-ray diffraction (yield 10%, m.p. 505-506 K). MS (EI 70 eV), m/z (%) 481 (5, M^+), 328 (64, $[M - ClC_6H_4COCH_2]^+$), 292 (62), 139 (100). #### Crystal data | $C_{26}H_{18}Cl_3NO_2$ | Mo $K\alpha$ radiation | |---------------------------------|---| | $M_r = 482.76$ | Cell parameters from 5112 | | Orthorhombic, Pbca | reflections | | a = 11.2405 (2) Å | $\theta = 3.4-27.5^{\circ}$ | | b = 18.8738 (3) Å | $\mu = 0.44 \text{ mm}^{-1}$ | | c = 21.0529 (3) Å | T = 120 (2) K | | $V = 4466.39 (12) \text{ Å}^3$ | Block, colourless | | Z = 8 | $0.20 \times 0.20 \times 0.15 \text{ mm}$ | | $D_x = 1.436 \text{ Mg m}^{-3}$ | | #### Data collection | Nonius KappaCCD diffractometer | 3921 reflections | |--|-----------------------------------| | φ and ω scans | $R_{\rm int} = 0.048$ | | Absorption correction: multi-scan | $\theta_{\rm max} = 27.5^{\circ}$ | | (SADABS; Sheldrick, 2003) | $h = -14 \rightarrow 14$ | | $T_{\min} = 0.922, \ T_{\max} = 0.938$ | $k = -21 \rightarrow 24$ | | 52455 measured reflections | $l = -27 \rightarrow 27$ | | 5112 independent reflections | | #### Refinement | ., | | |---------------------------------|--| | Refinement on F^2 | $w = 1/[\sigma^2(F_0^2) + (0.0554P)^2]$ | | $R[F^2 > 2\sigma(F^2)] = 0.042$ | + 2.4672 <i>P</i>] | | $wR(F^2) = 0.116$ | where $P = (F_0^2 + 2F_c^2)/3$ | | S = 1.05 | $(\Delta/\sigma)_{\text{max}} = 0.001$ | | 5112 reflections | $\Delta \rho_{\text{max}} = 0.41 \text{ e Å}^{-3}$ | | 289 parameters | $\Delta \rho_{\min} = -0.58 \text{ e Å}^{-3}$ | | H-atom parameters constrained | | | | | with $I > 2\sigma(I)$ **Table 1** Selected geometric parameters (Å, °). | N31-C32 | 1.302 (2) | C35-C36 | 1.369 (3) | |-----------------|-------------|-----------------|-------------| | N31-C38A | 1.368 (2) | C36-C37 | 1.402 (3) | | C32-C33 | 1.422 (2) | C37-C38 | 1.369 (3) | | C33-C34 | 1.370 (3) | C38-C38A | 1.416 (3) | | C34-C34A | 1.414 (3) | C34A – C38A | 1.409 (3) | | C34A – C35 | 1.418 (3) | C32-Cl3 | 1.7463 (18) | | | | | | | C32-C33-C1-C18 | -110.03(19) | C32-C33-C1-C28 | 126.64 (18) | | C33-C1-C18-C17 | 160.82 (15) | C33-C1-C28-C27 | -67.55(19) | | C1-C18-C17-C11 | 171.11 (15) | C1-C28-C27-C21 | -176.29(15) | | C18-C17-C11-C12 | 3.3 (3) | C28-C27-C21-C22 | -16.4(3) | | | | | | **Table 2** Hydrogen-bond geometry (Å, °). | D $ H$ $\cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D-H\cdots A$ | |--------------------------------|----------------|-------------------------|--------------|---------------| | C15—H15···O17 ⁱ | 0.95 | 2.59 | 3.502 (2) | 160 | | C34—H34···N31 ⁱⁱ | 0.95 | 2.39 | 3.244 (2) | 150 | | C37—H37···O17 ⁱⁱⁱ | 0.95 | 2.45 | 3.330 (2) | 155 | Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $x - \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$. The space group Pbca was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C-H distances of 0.95 (aromatic), 0.99 (CH₂) and 1.00 Å (aliphatic CH), and with $U_{\rm iso}({\rm H})$ values of $1.2U_{\rm eq}({\rm C})$. Data collection: *COLLECT* (Hooft, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999). X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. BI and HT thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) and Universidad Nacional de Colombia for financial support. Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1891). Services for accessing these data are described at the back of the journal. #### References Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. McArdle, P. (2003). *OSCAIL for Windows*. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13. Trilleras, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). *Acta Cryst.* E61, o1892–o1894.